Материалы

Наноматериалы и нанотехнологии


В настоящее время показано, что элементарный углерод способен образовывать сложные вогнутые поверхности, состоящие из пяти, шести, семи и восьмиугольников.

Начиная с 80-х годов, были открыты бесчисленные формы элементарного углерода - фуллерены и нанотрубки, гигантские фуллерены и луковичные структуры, тороидальные и спиральные формы углерода.

Происхождение термина фуллерен связано с именем американского архитектора Букминстера Фуллера, который применял такие структуры при конструировании куполообразных зданий. Эти архитектурные конструкции напоминают структуру молекулы С60. Фуллерены в конденсированном состоянии называются фуллеритами, а фуллериты, легированные металлами или другими присадками, называются фуллеридами.

Центральное место среди фуллеренов занимает молекула С60, характеризующаяся высокой симметрией и стабильностью. Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. При оптимальных условиях генерации молекул фуллеренов нагревание графита должно быть умеренным, в результате чего продукты его распада будут состоять из фрагментов, являющихся элементами структуры молекул фуллеренов. При этом разрушаются связи между отдельными слоями графита, но не происходит разложения испаряемого углерода на отдельные атомы. При этих условиях испаряемый графит состоит из фрагментов, включающих шестиугольные конфигурации атомов углерода. Из этих фрагментов и происходит сборка молекулы С60 и других фуллеренов. Для разложения графита при получении фуллеренов используют как электрический нагрев графитового электрода, так и лазерное облучение поверхности графита.

Открытие фуллеренов привлекло внимание специалистов в области синтеза искусственных алмазов. Превращение кристаллического фуллерена в алмаз происходит при значительно более мягких условиях, чем в случае традиционно используемого для этой цели графита. Механические свойства фуллеренов позволяют использовать их в качестве высокоэффективной твердой смазки.

Еще в 1994 году компания “Мицубиси” распространила сообщение о первом применении фуллеренов в электронике. Согласно этому сообщению, фуллерены используются в качестве основы для производства аккумуляторных батарей. Эти батареи во многих отношениях аналогичны широко распространенным металлогидридным никелевым аккумуляторам, однако обладают в отличие от последних способностью запасать в пять раз больше энергии. Такие батареи характеризуются более высокой эффективностью, малым весом, экологической и санитарной безопасностью по сравнению с наиболее продвинутыми в этом плане аккумуляторов на основе лития.

При частичном термическом разрушении слоев графита могут образовываться не только молекулы фуллеренов, имеющие замкнутую сферическую или сфероидальную структуру, но также и длинные трубки, поверхность которых образуется правильными шестиугольниками. Эти трубки, длинной до нескольких микрометров и диаметром в несколько нанометров могут, в зависимости от условий получения, состоять из одного или нескольких слоев, иметь открытые или закрытые концы и обладать различными проводящими свойствами - от проводящих до изолирующих.

Учеными было показано, что в зависимости от расположения молекул фуллерена внутри нанотрубки система может проявлять свойства проводника, полупроводника или изолятора. Такие нанотрубки получили название  «стручок». В будущем это может стать основой для создания сверхминиатюрных транзисторов, размеры которых измеряются в единицах нанометров. Схемы на основе таких нанотрубок также отличаются огромным быстродействием - скорость переключения состояния модели транзистора, состоящей из   нанотрубки   и одной молекулы  фуллерена  составляет всего 10 пикосекунд (1 пкс = 10-12  с). Кроме этого, перемещение горошин-фуллеренов в нанотрубке позволяет управлять явлением резонанса квантовых волн электронов. Таким образом «наностручки» могут стать средством для создания реальных квантовых компьютеров. Роль квантовой точки в этом случае будет играть молекула фуллерена. Однако реальное использование «наностручков» начнется, по-видимому, очень нескоро.

1 2
Общее время работы: 13.844966888428 мс
Использование памяти: 658 КБ